Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The spectra of several galaxies, including extremely metal-poor galaxies from EMPRESS, have shown that the abundances of some Si-group elements differ from “spherical” explosion models of massive stars. This leads to the speculation that these galaxies have experienced supernova explosions with high asphericity, where mixing and fallback of the inner ejecta with the outer material lead to the distinctive chemical compositions. In this paper, we consider the jet-driven supernova models by direct 2D hydrodynamics simulations using progenitors of about 20–25M⊙at zero metallicity. We investigate how the abundance patterns depend on the progenitor mass, mass cut, and asphericity of the explosion. We compare the observable with available supernova and galaxy catalogs based on56Ni, ejecta mass, and individual element ratios. The proximity of our results with the observational data signifies the importance of aspherical supernova explosions in chemical evolution of these galaxies. Our models will provide the theoretical counterpart for understanding the chemical abundances of high-zgalaxies measured by the James Webb Space Telescope.more » « less
-
null (Ed.)ABSTRACT Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected ∼100 old main-sequence turn-off stars (ages ≳12 Gyr) with kinematics compatible with the Milky Way stellar halo population in the Solar neighbourhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars (‘OHS’). We find that the observed abundances in the OHS with [Fe/H] > −1.5 are best explained by contributions from both CCSNe and SN Ia, where the fraction of SN Ia among all the metal-enriching SNe is up to 10–20 per cent for stars with high [Mg/Fe] ratios and up to 20–27 per cent for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H] > −1.5, ∼ 50–60 per cent of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo.more » « less
-
The distribution of the spin-dipole strengths in 16 O and neutrino-induced reactions on 16 O areinvestigated by shell-model calculations with new shell-model Hamiltonians. Chargedcurrent and neutral-current reactioncross sections are valuated in various particle and γ emission channels as well as the total ones at neutrinoenergies up to Eν≈ 100 MeV. Effects of multiparticle emission channels, especially the αp emission channels, on nucleosynthesis of 11 B and 11 C in core-collapse supernova explosions are investigated. The MSW neutrino oscillation effects oncharged-current reaction cross sections are investigated for future supernova burst. Electron capture rates for a forbidden transition 20 Ne(O g.s. + ) → 20 F(2 g.s. + ) in stellar environments are evaluated by the multipole expansion method with the use of shell model Hamiltonians, and compared with those obtained by a prescription that treats the transition as an allowed GamowTeller (GT) transition. Different electron energy dependence of the transition strengths between the two methods is found to lead to sizable differences in the weak rates of the two methods.more » « less
An official website of the United States government
